A New Population-Based Method for
Satisfiability Problems

Jin-Kao Hao and Raphaél Dorne

Abstract. This paper presents the mask method (MASK), a
new population-based, evolutionary search procedure for find-
ing models for satisfiability problems (SAT). In this method,
a partial truth assignment for a given boolean expression con-
taining N variables is represented by a partially instantiated
0/1 string with N positions (called mask), with each position
coding one variable. The mask method begins with a popu-
lation of masks. An iteration process follows to evaluate each
mask in the population using an evaluation mechanism, then
to discard half of them, and finally to divide each remaining
mask into two new ones by fixing a free position in the mask
to 0 and 1 respectively. This process continues until all the
positions in the mask have a fixed value. The method is com-
pared with a class of genetic algorithms (GAs) on a set of
SAT instances and proves to be much more efficient.

1 INTRODUCTION

The satisfiability problem or SAT [5] is of great importance
in Artificial Intelligence both in theory and in practice. The
statement of the problem is very simple. Given a well-formed
boolean expression E, is there a truth assignment that satis-
fies it? In theory, SAT is one of the six basic core NP-complete
problems. In practice, many applications such as VLSI test &
verification, consistency maintenance, fault diagnosis, plan-
ning and so on can be formulated with SAT. SAT is originally
stated as a decision problem. However, there are many inter-
esting problems which are related. We can mention, among
others, 1) model finding: find one satisfiable assignment, find
all satisfiable assignments, find the ”best” assignment under
some criteria constraints; 2) model counting: find the num-
ber of solutions, the number of non-isomorphic solutions; 3)
information deduction.

Although the SAT problem is NP-complete, many methods
have been devised to satisfy practical needs. These methods
can be roughly classified into two large categories: complete
and incomplete methods. As examples of the first category,
we can mention the logic-based approach (the Davis & Put-
nam algorithm, Binary Decision Diagrams), the constraint-
network-based approach (CSP, local propagation), and 0/1
linear programming. The second category includes such meth-
ods as evolutionary algorithms, simulated annealing, and local
search. Theoretically, complete methods are able to find al-
I the solutions to any boolean problem, or to prove that no
solution exists provided that no time constraint is present.

1 EERIE-LERI, Parc Scientifique G. Besse, F-30000 Nimes, France

email: {hao, dorne}@eerie.fr

© 1994 J.K. Hao and R. Dorne

1

However, the combinatorial nature of SAT makes these com-
plete methods impractical when the size of the problem in-
creases. On the other hand, incomplete methods look for ef-
ficient heuristics which help to delay this explosion as late as
possible at the expense of completeness. Indeed, incomplete
methods have recently proven that they are able to solve hard
SAT instances in a wide class of problems ([3], [14], [10], [6],
18], [13] [11]).

We are especially interested in model finding. In this paper,
we present the mask method, MASK for short, a population-
based, incomplete, evolutionary search procedure. MASK has
some characteristics similar to classic genetic algorithms (GAs)
such as population and binary coding. The principle of the
method is simple. It is based on three elements: a set of par-
tially instantiated 0/1 strings (called masks) representing po-
tential solutions to the given problem, an evaluation function
and an evolution mechanism. The method begins with a popu-
lation of masks. Each mask is then scored using the evaluation
function. According to their scores, high-scored masks are al-
lowed to evolve by instantiating one more non-fixed variable
and low-scored masks are eliminated. This process continues
until all variables in the masks are instantiated. Such com-
pletely instantiated masks will be expected to be solutions to
the boolean expression.

The paper is organized as follows. In §2, the mask method
is presented in detail and its associated interpretation is giv-
en. In §3, results of experiments and comparisons with GAs
are presented. In the last section, different possibilities for
improving the method and future work are discussed.

2 THE MASK METHOD (MASK)
2.1 Some definitions

A mask of length N is an N-position, ordered string composed
of fixed values 0, 1 and non-fixed values represented by x*.
Any mask of length N with P fixed positions is denoted by a
generic mask M(V1...Vp,F1...Fn_p) where V;=0 or 1(1<i<P)
and Fj=+(1<j<N-P).

The length N of a mask is defined as the number of boolean
variables of the boolean expression at hand, each position in
the mask coding a boolean variable. Masks are particularly
appropriate for representing a set of potential solutions to
the given boolean expression: fixed positions are instantiated
boolean variables and free positions are variables to be in-
stantiated by 0 or 1. Moreover, masks are organized into pop-
ulations to represent a bigger set of potential models. Masks
are the basic element manipulated by the mask method.

ECAI 94. 11th Furopean Conference on Artificial Intelligence Edited by A. Cohn

Published in 1994 by John Wiley & Sons, Ltd.

A RGS of length N is a randomly generated string of N-
positions composed of fixed values 0 and 1.

An evaluation functionis a function allowing the "fitness”
of a potential solution represented by a 0/1 string to be e-
valuated with respect to a given boolean expression. There
are many ways to define this function. In this paper, we use
the function Eval defined below. Let E be a succinct boolean
expression,2 V(E)={V1...Vn} the ordered set of all the vari-
ables in E, and S a 0/1 string of length N. Eval: ExS—[0,1]
is then recursively defined as follows:

1. Eval(V;,S) =0 if the ith position of S is 0
=1 if the ith position of S is 1
2. Eval(V;,S)=1-Eval(V;,S)
3. Eval(Ey A ... A En,S)= Ave(Eval(E1,S) ... Eval(Ey,,S))
4. Eval(Ey V...V Ep,,S)= Max((E1,S) ... Eval(E,9))

The following properties of this evaluation function can be
easily verified.

1. 0<Eval(E,S)<1
2. Eval(E,S) = 1 iff S is a solution to E.
3. Eval(E,S) < 1iff S is not a solution to E.

2.2 The method

Like most evolutionary approaches, the mask method is based
essentially on three elements: a population of partially instan-
tiated masks, an evaluation function and an evolution mech-
anism. Masks represent partial truth assignments (potential
solutions) to the given boolean expression. The evaluation
function allows the masks to be measured with respect to the
given problem. Finally, the evolution mechanism eliminates
some masks and makes each remaining mask evolve to the
next generation by producing two new masks. Figure 1 gives
the general outline of the method.

Initialize mask-population P (containing 2% masks,
each having K positions instantiated to one
different integer from 0 to 2%-1
while 3 free-position in masks do
{
evaluate P;
select the better half of P (25~ masks);
divide each selected mask into two masks by
fixing a free-position to 0 and 1;

2.2.1 Initialization

Initial mask-population: A population of 2 (K>1) masks
of length N is constructed as follows. 2% strings of length N
are first generated. The leftmost K positions are then set to
the 2% integers from 0 to 2%-1. The other N-K positions are
left undefined. This initialization thus creates a population of
2K masks of the form M(WV1...Vk,Fi1...Fn_k) where V;=0 or
1(1<i<K) and Fj=x (1<j<N-K). For example. {00 * * * *x,
OT# % # % %%, 10% * % % #%,1 1% % * % ¥x} is a population of 2%(=4)
masks of length 8 and represents 2% x 2° = 2% potential solu-
tions to a boolean expression containing 8 distinct variables.

2 A boolean expression is said to be succinct if it contains only
and, or, and not, and if the negations are all pushed down to the
boolean variables using DeMorgan’s rules.

Automated Reasoning 136

Generation of a RGS-set: A set of RGS of length N is
constructed as follows. For each position of each RGS, the
value 0 or 1 is randomly generated and set to the position. As
will be explained in the next section, the RGS-set will only
be used to score the masks and will not evolve.

2.2.2 FEvolution

After initialization, an evaluation-selection-division cycle fol-
lows to make the mask-population evolve towards solutions.

a) Mask evaluation The aim of the mask evaluation is to
measure the ”fitness” of partially instantiated masks with re-
spect to the given boolean expression. The difficulty concern-
ing this evaluation is to have a good measuring rule. How-
ever, no exact rule is available and only approximate rules
can be used. MASK uses Eval and RGS together as the ap-
proximate rule. The evaluation function Eval(E,S), defined
in §2.1, works only with fully instantiated 0-1 strings. In or-
der to use this function to evaluate masks which contain free
positions, we must complete these non-fixed positions in some
way. Moreover, in order to guarantee homogeneity, the same
completion mechanism should be applied to the whole mask-
population.

Suppose that M(V1...Vp, Fi ... Fx_p) is the mask to be
evaluated with V;=0 or 1(1<i<P, P being the number of
fixed positions until now) and F;=+ (1<j<N-P, N-P being the
number of free positions), and also that L is the size of the
RGS-set, we give below three possible evaluation mechanisms
using Eval and RGS-set. The first mechanism is to replace
Fy...Fnx_p of the mask M(Vi...Vp, Fy ... Fn_p) with the
corresponding values of each RGS, leading to L instantiated
masks, then to score each transformed masks using bf Eval,
and finally to take the average of all the scores as the score
of the mask3 In the second evaluation mechanism, instead of
using the average, we take the maximum from among all the
scores obtained from the L transformed masks. The third ap-
proach is to evaluate only those RGS the P leftmost positions
of which are equal to Vi ...Vp of the mask and then to take
the average or the maximum of these scores. The first two
mechanisms apply whatever the size of the RGS-set while the
third does not because there may be no such RGS in the
RGS-set. In the experiments reported in §3, the first evalua-
tion mechanism was used.

Note that the RGS-set is only used to measure the quality
of each mask and will not evolve. The size of this RGS-set is
a user-controlled parameter which can be changed to influ-
ence the precision of mask measurement. In extreme cases,
the RGS-set may contain a single random 0/1 string.

b) Mask selection Once all the 2% masks of the cur-
rent population have been evaluated and scored, those with
low scores are eliminated leaving the 25! masks which have
better scores in the mask-population.

¢) Mask division This step allows the current mask-
population to effectively evolve into a new mask-population
with the help of the division operation defined as follows.

For each M(V1...Vp, F1... Fn_p) of the oK -1 remaining
masks, the following operations are carried out:

1. The next free position F; in the mask M is chosen.

3 If one of the transformed masks happens to be evaluated at the
value 1, then it is a solution and the method stops.

J.K. Hao and R. Dorne

2. M(Vi...Vp, 1 ... Fy_p) is divided into two new masks

M(Vi...Ve,0,Fs.. . Fy_p)&M(Vi...Ve,1,Fs... Fx_p).

3. These two new masks are added to the mask-population.

This evolution process (steps a-¢) continues until all posi-
tions in the masks are instantiated. Since there are N-K free
positions in the masks after initialization and each division
fixes one free position, it is clear that this process repeats ex-
actly N-K times before all positions receive a fixed value. Two
cases may occur at this stage: either one of the fully instanti-
ated masks is a solution; or none of the masks is a solution. In
the first case the process stops. In the second case, we know
that no solution has been found during this execution, thus
a new execution is started with a new random RGS-set. As
is explained above, the set of RGS and Eval together consti-
tute the approximate measuring rule for mask evaluation. If
no solution is found during one execution, this implies that
the measuring rule used in this execution is not sufficiently
precise. As Eval is fixed, the only way to change the rule is
to vary the RGS-set.

2.3 Interpretation

In the following sections, we will always use N as the length
of a mask, and K (K<N) as the number of initially fixed posi-
tions in a mask. We remind the reader that N is defined as the
number of boolean variables of the boolean expression (BE)
at hand and each position in the mask represents a boolean
variable. As a result, a mask with NF free positions represents
2N F potential models of BE. In fact, replacing the NF
free positions by 0 or 1 gives a possible truth assignment to
BE. Therefore, a population of 2% masks each having NF free
positions represents a collection of 2V models.

The mask method may be better viewed as a heuristic-
guided search procedure in a complete binary search tree com-
posed of 2V branches. Tt is easy to see that a mask of length
N with NF free positions covers a subspace of 2™F branches
of a total search space of size 2~ . Therefore, a population of
2% masks covers 25 subtrees representing 2V FTE
If we define the initial masks which have N-K free variables

a set of

branches.

as the first level nodes in the partial search tree traveled by
the method, we can show that this partial search tree has the
following properties:

1. A node (mask) at the level i (1< 1 <N-K) has N-K-i+1 free
variables.

2. At any level i (1<i<N-K), there are exactly 2% nodes.

3. The first level represented by the initial 2% masks covers
the total search space 2%.

4. Any higher level covers a search space of 2V~

5. The lowest level, i.e. N-K+1 level, covers a search space of
2% branches.

“+1 branches.

The exploration of the search tree is carried out in a top-down,
level-by-level manner. As the search progresses, the search
space decreases. Beginning with the 2% initial masks covering
the total search space 2%, the method subsequently explores
2% branches in the search tree. At each level i>1 covering 2% x
gN—K+4i-1— 9N—=i+1 Lranches, only half of these 2% partially
instantiated branches are allowed to go down to the next level.
When the search reaches the leaves of the search tree, two
cases are possible: either the instantiation of the N variables

Automated Reasoning 137

of a branch verifies the given boolean expression and thus
represents a solution, or the branch is not a solution. In the
first case, the search stops. In the second case, the search is
restarted from the first level to try other branches.

By retaining a set of partially instantiated masks during the
search, MASK has many different alternatives at each itera-
tive step. Consequently, MASK demonstrates good diversity
during its search. Another point is that larger mask popula-
tions do in fact cover bigger subspaces, and thus the search is
more likely to find a solution during one execution.

2.4 Complexity

The initialization step takes time @(PxN) where P=max{L1,
1.2}, L1 being equal to |[Mask-population| and L2 to |RGS-set|
and N the length of masks. The complexity of the evolution
step is determined by the mask evaluation, mask selection and
mask division. Among these steps, the evaluation is the most
computationally intensive one. The complexity of the mask
evaluation depends on the given boolean expression and takes
time ©(L1xL2xX), X being the complexity of one evaluation.
For 3-SAT, this complexity becomes ©(L1xL2xNC), NC being
the number of clauses. Both the mask selection and division
take time ©(L1xlogL1).

3 RESULTS OF EXPERIMENTS

The method has been implemented in C. The implementation
integrates a user interface with which one can easily control
various parameters such as the size of the mask-population,
the size of the RGS-set, the number of independent runs and
so on. To test MASK, we have used several structured SAT
instances and a family of Hamiltonian Circuit (HC) problems
defined in [3][12] and Hamilton’s World Tour (WT) problem
[1]. The desirable property of these problems is that we can
control their size and difficulty. Most of them, especially HC
and WT, are believed to be hard SAT instances.

MASK was compared in detail with genetic algorithms, and
in particular, with the GA described in [3][12] that will be
referred to as DSGA. Due to the limited length of the paper,
all the results cannot be presented here. We only underline
that great care was taken to make sure that the same SAT
instances and the same criteria were used in the comparison.
Results indicate that MASK outperforms DSGA in all the
test examples used by [3][12]. In this section, we give some
examples. More details about the context of the comparison
and the results can be found in [7].

Like [3][12], we use the evaluation number (EN) (defined as
the number of evocations of the Eval evaluation function) as
the first comparison criterion. For MASK, a second criterion
used is the number of failures (FN) before a solution is found.
This number roughly corresponds to the number of re-runs in
GAs. In our experiments, unless indicated explicitly, we used
a population of 2°=32 masks for the search and a set of 3
RGSs and Eval for the mask measurement. The same Eval
was used by DSGA. The size of the chromosome-population
used in DSGA was fixed at 100. Results of MASK represent
data averaged over 20 independent runs while results of DSGA
from [3][12] represent data averaged over 10 runs.

Table 1 and 2 present the results of the comparison between

DSGA and MASK for the following two SAT instances:

J.K. Hao and R. Dorne

(X1 A AXp) V (mX1 AL A=Xy) (TP)
which has two solutions (all Os and all 1s) and

(X1iA... AXp) V(X1 A-Xi AL A-Xy) (FP)
in which one solution (all 0s) is now almost correct and the
only correct solution is that of all 1s. The results indicate that
MASK scales up better than DSGA for these problems. Note
that MASK always finds a solution to TP for each run and
needs at most 2 runs to find a solution for FP.

Vars | En(DSGA) | En(Mask) | FN(Mask)
20 1 200 1152 0

60 5 000 4 992 0

80 11 000 7 200 0

90 13 000 8 064 0

200 ? 18 432 0

400 ? 28 320 0

600 ? 57 120 0

800 ? 76 416 0
1000 ? 95 616 0

Table 1. Comparison of DSGA and MASK for TP

Vars | En(DSGA) | En(Mask) | FN(Mask)
20 2 000 1853 0.3

60 18 000 8 390 0.6

80 20 000 11 268 0.6

90 35 000 12 979 0.5
200 ? 31 766 0.7
400 ? 48 980 0.2
600 ? 152 288 1.6
800 ? 133 500 0.75
1000 ? 143 400 0.5

Table 2. Comparison of DSGA and MASK for FP

Table 3 shows the results for the so-called 6-peak problem

which has one global optimum and 5 local optima.
3-peak: (X1 A AXp) V(X1 A-X1ALLADX,) YV

(X1 A=X1iA=Xo A A= X o AX g1 A A X))
4-peak: 3-peak Vv

(X1 A=X1 AKX A A X o A X apr A A X))
5-peak: 4-peak V

(X1 A-XiAXoA=X3gAXy AKX . A=Xp_1 A Xn)
6-peak: 5-peak Vv

(X1 A=X1A-XoAX3gA-Xg AXs5. . ANX 1 A —|Xn)
The result of DSGA for this problem is not reported in [3].
However, from another paper [4], we do have some information
about the performance of DSGA for this problem. In fact, a
large number of generations was needed to find a solution.
For example, about 150 generations are needed to solve the
easier 5-peak problem, with a population of 1000 individuals.
This corresponds to about 150x1000=150000 evaluations. In
contrast, MASK needs on average only two runs to find the
solution for these problems with much lower EN.

Vars | En(DSGA) | En(Mask) | FN(Mask)
30 150 000 3 496 0.7
100 ? 16 521 0.8
200 ? 37 151 1
400 ? 75 748 1.2
600 ? 85 608 0.6
800 ? 104 050 1
1000 ? 191 060 1

Table 3. Results of MASK for 6-peak problem

Table 4 presents the results of the comparison for the Hamil-
tonian Circuit (HC) problem in a particular class of direct-
ed graphs constructed as follows. The N nodes of a graph
are labeled using consecutive integers from 1 to N. For any

Automated Reasoning

1<i<j<N, there is a directed edge from i to j. The first node
has directed edges to all other nodes except the Nth node.
The Nth node has a directed edge back to the first node.
Such a graph of N nodes has Nx(N-1)/2 edges. Note that
although only one Hamiltonian tour exists in such a graph,
there are many almost complete tours (local optima) scattered
throughout the search space. In order to solve this problem,
we first transform it into a SAT problem in the following way.
Each edge is represented by a boolean variable. Each node
is specified by its input and output constraint on boolean
variables. A Hamiltonian circuit is thus the conjunction of
the input/output constraints associated with all of the nodes.
The same transformation is used in DSGA.

The first column of Table 4 indicates the number of nodes
in a graph, and the second column the number of boolean
variables for coding the graph. In [3][12], tests were performed
within the range 4<N<10. When the number of nodes goes
above 10, the problem becomes intractable for DSGA. On
the contrary, for up to 20 nodes (about 200 variables), the
effort needed for MASK to find the solution increases in an
almost linear manner. Moreover, for up to 14 nodes, MASK
needs at most two runs to find the solution. As can be seen
in the table, even for a greater number of nodes, the number
of re-runs required remains reasonably small.

Nodes | Vars | EN(DSGA) | EN(Mask) | FN(Mask)
7 21 20 000 3 500 0.2
8 28 70 000 4 100 0.2
9 36 300 000 5 600 0.2
10 45 800 000 12 600 1
14 91 ? 28 300 1
18 153 ? 62 000 10
22 231 ? 126 760 2.5
26 325 ? 906 880 16
28 378 ? 1 046 300 16.5
30 435 ? 2 076 500 30

Table 4. Comparison between DSGA and MASK for HC

Table 5 presents the results of MASK for Hamilton’s World
Tour (WT) problem which concerns a graph of 20 nodes rep-
resenting a dodecahedron [1]. This problem should be difficult
since there are many local optima in it. No result is available
for DSGA for this problem. The results of MASK show also
that bigger mask-populations have indeed a positive influence
on the search performance for this problem.

Num. Mask | Num. RGS EN FN
8 10 420 944 898
16 10 332 112 35.5
32 10 174 080 8.8
64 10 122 240 2.6

138

Table 5. Results of MASK for WT problem

In addition to the above comparisons, we improved DSGA
by tuning various factors such as selection, mutation, and
population-size. Even if these improved versions performed
better than DSGA for TP & FP, their behavior for HC was
similar: when the number of nodes goes beyond 10, EN in-
creases very rapidly. This phenomenon was also observed in
[3] when they used an improved version of the Eval evaluation
function. Moreover, for WT, none of our GAs was able to find
the solution. Note also that compared to the total search space
of these problems, the size of the mask-population (2°=32)
used in our experiments represents a very small fraction of
this space. However, the method manages to find solutions
rapidly.

J.K. Hao and R. Dorne

4 DISCUSSION & CONCLUSIONS

The results of experimentation presented above are based on
an elementary implementation of the method. Many improve-
ments are possible concerning both the method itself and the
implementation. In this section, we identify some of those
possibilities and discuss future work.

Parallelism: At least two aspects of the mask method can
be naturally parallelized: the mask evaluation and the mask
division, since each of these two operations is independently
applied to individual masks in a mask-population.

Variable ordering: As presented in this paper, variable in-
stantiations in both the initialization and the division opera-
tions are carried out from left to right. If we suppose that all
variables in a given expression are equally importantflthen this
particular instantiation order will not be harmful. However,
this hypothesis does not necessarily hold for some problems
where the order of variables is indeed important. Therefore, it
will be desirable to put the variables in a decreasing order ac-
cording to their importance. In this way, important variables
will be instantiated first. For random boolean expressions, we
can suppose that all variables are equally important. Conse-
quently, MASK should work well for these problems. We are
working in this direction to confirm (or disprove) this claim.

Multi-evaluation functions: The precision of the evaluation
mechanism is essential for all evolutionary approaches includ-
ing the mask method. As was explained in §2.2, two factors
determine the evaluation of a mask: the RGS and the evalua-
tion function. In this paper, we have used a special and fixed
function, i.e. Eval, and a RGS-set to measure masks. It is
clear that it will be better to have a set of evaluation function-
s, each specializing in a class of problems. Equipped with this
multiple evaluation function mechanism, the method should
be able to select the most appropriate function for measuring
masks. In this way, the search will be better guided.

Combination with other methods: The mask method can
be used as a pre-processing procedure for other search proce-
dures working with initial configurations (0/1 strings) such as
local search and simulated annealing. Another possible com-
bination is to integrate local search inside population-based
approaches such as MASK.

In this paper, we have presented MASK, an evolutionary
search procedure for finding models for SAT. The method has
been compared with a class of GAs using a set of structured
SAT instances and better performance has been shown. Even
if more tests on a broader class of problems are desirable, we
think the method is promising and worthy of more investi-
gation. In particular, it will be interesting and important to
understand better its behavior and to identify the classes of
problems which may be solved with the method.

We are currently trying to compare our method with other
incomplete methods such as GSAT [10][11] as well as efficien-
t implementations of the Davis-Putnam procedure such as
Tableau [2]. In order to do this, we must select a sufficient-
ly large set of objective test examples and good comparison
criteria to make comparisons really meaningful. As the first

4 The notion of importance can be defined according to many cri-
teria. For example, a variable appearing several times in a giv-
en expression can be considered to be more important than a
variable appearing only once. In terms of constraints, a variable
having more constraints on it will be an important one.

Automated Reasoning 139

choice, we will use such hard random instances as proposed
in [9] and those used in the second DIMACS challenge. In-
deed, research on random formulae has recently drawn much
attention and important progress has been carried out in this
field. Besides, SAT encodings of other problems such as circuit
synthesis and diagnosis will also be considered. Note that s-
ince MASK works with more general boolean formulae, it also
works with these clausal formulae.

For clausal formulae, we are also investigating another evo-
lutionary method which uses an efficient internal representa-
tion of SAT instances and intelligent recombination operators
based on local search. The goal is to combine the better di-
versity offered by evolutionary approaches and the efficiency
of the local search to avoid local optima as much as possible.

ACKNOWLEDGEMENTS

We would like to thank the referees for their useful and per-
tinent comments which helped improve this paper. The work
reported in this paper is partially supported by the BAHIA
projet (PRC-TIA: Programme de Recherches Coordonnées en
Intelligence Artificielle).

REFERENCES

[1] Corman T.H. Leiserson C. and Rivest R.L. ‘Introduction to
Algorithms’, MIT Press, Cambridge, MA, 1992.

[2] Crawford J.M & Auton L.D. ‘Experimental Results on the
Cross-Over Point in Satisfiability Problems’. Proc. of AAAI-
93, Washington DC, 1993, pp21-27.

[3] De Jong K.A. & Spears W.M. ‘Using Genetic Algorithms to
Solve NP-Complete Problems’. Intl Conf. on Genetic Algo-
rithms, Fairfax, Virginia, June 1989, pp124-132.

[4] De Jong K.A. & Spears W.M. ‘An Analysis of the Interacting
Roles of Population Size and Crossover in GAs’. Intl. Work-
shop on PPSN, Dortmund, Germany, Oct. 1990, pp38-47.

[5] Garey M.R. & Johnson D.S. ‘Computers and Intractability:
a guide to the theory of NP-Completeness’. Freeman, San
Francisco, CA, 1979.

[6] Gu J. ‘Efficient Local Search for Very Large-Scale Satisfiabil-
ity Problems’. SIGART Bulletin, Vol.3, No.1, Jan. 1992.

[7] Hao J.K. & Dorne R. ‘An Empirical Comparison of Two Evo-
lutionary Methods for Satisfiability Problems’. EERIE TR
No. 93-11-01, Nimes, France, Nov. 1993.

[8] Koutsoupias E. & Papadimitriou C.H. ‘On the Greedy Al-
gorithm for Satisfiability’. Information Processing Letters,
Vol.43 1992, pp53-55.

[9] Mitchell D., Selman B. and Levesque H.J. ‘Hard and Easy
Distributions of SAT Problems’. Proc. of AAAI-92, San Jose,
CA, 1992, pp459-465.

[10] Selman B., Levesque H.J., and Mitchell M. ‘A New Method
for Solving Hard Satisfiability Problems’. Proc. of AAAT-92,
San Jose, CA, 1992, pp.440-446.

[11] Selman B., Kautz H.A and Bram C. ‘Noise Strategies for Im-
proving Local Search’. to appear at AAAT-94, Seattle, WA,
July 1994.

[12] Spears W.M. ‘Using Neural Networks and Genetic Algorithms
as Heuristics for NP-Complete Decision Problems’. NCARAI
TR-AIC-91-019, Washington DC, 1991.

[13] Spears W.M. ‘Simulated Annealing for Hard Satisfiability
Problems’. NCARAT TR-~-AIC-93-015, Washington, DC 1993.

[14] Young R.A. & Reel A, ‘A Hybrid Genetic Algorithm for a
Logic Problem’, Proc. of the 9th ECAI, Stockholm, Sweden,
Aug. 1990, pp.744-746.

J.K. Hao and R. Dorne

